Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography.
نویسندگان
چکیده
Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.
منابع مشابه
Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography† †Electronic supplementary information (ESI) available: Supporting information, Movies S1 and S2. See DOI: 10.1039/c5cc00401b Click here for additional data file. Click here for additional data file. Click here for additional data file.
Movie S2: Zoom of the interface region between left, middle, and right particle. The left and right particles are cut for better visibility of the interface area and rendering colors are set as in movie S1. The movie clearly shows the enhanced Fe and Ni concentrations at the surface of the left and right particle as well as throughout the middle particle. In the last third of the movie the midd...
متن کاملLife and death of a single catalytic cracking particle
Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irrevers...
متن کاملMapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography
Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore struc...
متن کاملX-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes
Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3 D multi-element imaging, at submicron resolution was achieved by using a large-array Maia fluorescence detector. Our results show that Fe, Ni and Ca have significant concentr...
متن کاملOlefin production from catalytic cracking of light fuel oil over different additives
The catalytic cracking of a fuel oil over fluid catalytic cracking (FCC) catalyst has been investigated applying different additives. Catalyst mixtures consisting of a equilibrium FCC catalyst (E-Cat) blended with ZSM-5, MCM-41 and Mordenite additives were examined at the additive levels of 25 wt.%. The catalytic performance of the matrix was studied in a fixed bed micro-activity test unit (MAT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 51 38 شماره
صفحات -
تاریخ انتشار 2015